Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.
نویسندگان
چکیده
Applications of liquid crystals (LCs), such as smart windows and the ubiquitous display devices, are based on controlling the orientational and translational order in a small volume of LC medium. Hence, understanding the effects of confinement to the liquid crystal phase behaviour is essential. The NMR shielding of (129)Xe atoms dissolved in LCs constitutes a very sensitive probe to the details of LC environment. Linking the experimental results to microscopic phenomena calls for molecular simulations. In this work, the NMR shielding of atomic (129)Xe dissolved in a uniaxial thermotropic LC confined to nanosized cylindrical cavities is computed from coarse-grained (CG) isobaric Monte Carlo (MC) simulations with a quantum-chemically (QC) pre-parameterised pairwise-additive model for the Xe nuclear shielding tensor. We report the results for the (129)Xe nuclear shielding and its connection to the structure and order of the LC appropriate to two different cavity sizes, as well as a comparison to the results of bulk (non-confined) simulations. We find that the confinement changes the LC phase structure dramatically and gives rise to the coexistence of varying degrees of LC order, which is reflected in the Xe shielding. Furthermore, we qualitatively reproduce the behaviour of the mean (129)Xe chemical shift with respect to temperature for atomic Xe dissolved in LC confined to controlled-pore glass materials. In the small-radius cavity the nematic - paranematic phase transition is revealed only by the anisotropic component of the (129)Xe nuclear shielding. In the larger cavity, the nematic - paranematic - isotropic transition is clearly seen in the Xe shielding. The simulated (129)Xe NMR shielding is insensitive to the smectic-A - nematic transition, since in the smectic-A phase, the Xe atoms largely occupy the imperfect layer structure near the cavity walls. The direct contribution of the cavity wall to (129)Xe nuclear shielding is dependent on the cavity size but independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.
منابع مشابه
Xenon NMR Study of a Nematic Liquid Crystal Confined to Cylindrical Submicron Cavities
NMR studies of xenon gas dissolved in the liquid crystal ZLI 1132 confined to submicron cylindrical cavities are reported. Spectra taken as a function of temperature yield a clear indication of the nematic to isotropic phase transition of the confined liquid crystals. In the nematic phase at 21 "C, the resonance line of dissolved 129Xe exhibits a chemical shift anisotropy of 15 ppm due to a ran...
متن کاملمحاسبه ساختار بلور مایع مدل نماتیک با مولکولهای استوانهای و بیضیوار محدود شده بین دو دیوار
The density functional theory analogue of Percus Yevick (PY) and Hyper-Netted chain (HNC) has been used to write the grand potential of a liquid with cylindrical and ellipsoidal molecules. The integral equations for the density can be obtained by minimizing the grand potential with respect to the density. Some kinds of liquid crystals, can have the cylindrical or ellipsoidal rigid molecules. ...
متن کاملComputer simulations of the ordering in a hybrid cylindrical film of nematic liquid crystals.
We present an investigation of the ordering in a nematic liquid-crystal film confined between two cylindrical surfaces with antagonistic (radial and planar) anchoring alignments. A Monte Carlo study of a Lebwohl-Lasher model with suitable boundary conditions has been performed to calculate the ordering and the molecular organization for different film thicknesses. The simulation results are com...
متن کاملElectrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer
Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...
متن کاملConstant-pressure simulations of Gay-Berne liquid-crystalline phases in cylindrical nanocavities.
Applications of liquid crystals (LCs) are based on controlling the orientational and translational order of the medium. One important way of control is via confinement. In this work, uniaxial thermotropic LCs confined to nanosized cylindrical cavities are studied using isobaric parallel tempering (PT) Monte Carlo (MC) simulations. The LCs are modeled using the Gay-Berne (4.4, 20.0, 1, 1) (GB) p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2015